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Fortunately, there are defenses against BGP hijacking

Protocol 
extensions

RPKI + ROV 
BGPSec, ASPA

Configuration 
guidelines

Route filters

Monitoring 
platforms

ARTEMIS 
BGPAlerter
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Despite the efforts, BGP is still vulnerable 
to forged-origin hijacks

Attacker: 
hijacks 7.0.0.0/8 

prepends 7

Less but still a significant fraction 
of the traffic is diverted to the attacker
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Existing defenses poorly neutralise forged-origin hijacks

Protocol 
extensions

RPKI + ROV 
BGPSec, ASPA

Configuration 
guidelines

Route filters

Monitoring 
platforms

ARTEMIS 
BGPAlerter

RPKI+ROV can’t detect forged-origin hijacks 
BGPSec and ASPA will take years 
to be widely deployed

Often missing and inaccurate 
as they are constructed based on the IRR

Narrowly focused as they detect hijacks 
that only pertain to the AS deploying it
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Forged-origin hijacks are actively used by attackers

February 3, 2022
August 17, 2022

Both attacks are the result of a forged-origin hijack
11



DFOH: A System to Detect Forged-Origin BGP Hijacks 
on the Whole Internet
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DFOH aims to detect the fake AS links 
induced by forged-origin hijacks

fake link

Upon the attack: 
AS5 (attacker) and AS7 (victim) 
appear directly connected

BGP vantage point
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Attacker: 
hijacks 7.0.0.0/8 

prepends 6 7 fake link

An attacker cannot escape from creating a fake AS link 
without hampering the effectiveness of its attack

There is no new AS link if  
the attacker prepends 6 7

But none of the ASes divert traffic to 
the attacker as the AS path is longer

path: 4 7

path: 2 4 7

Traffic to 
7.0.0.0/8
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New AS link

We find 166 new AS links every day (median) 
and the vast majority are likely legitimate

Using the BGP data from 200 RIS and RouteViews 
peers and collected during ten months in 2022

Problem: There are many new AS links every day 
but no simple property that tells whether they are real or fake
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Problem: There are many new AS links every day 
but no simple property that tells whether they are real or fake
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Outline

DFOH’s main challenge

DFOH’s inference pipeline

DFOH’s inferences are accurate

DFOH 

is to detect fake AS links 

relies on domain-specific knowledge 
and a tailored link prediction framework
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DFOH’s fake AS links inference algorithm comprises three steps
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Vantage point
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Node 
centrality

Neighborhood 
richness

Topological 
patterns

focus
trianglesfocus

neighbors

focus

shortest paths

DFOH uses a total of 11 topological features  
that can be divided into four categories

Closeness 

focus

shortest 
distance
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DFOH looks for three types 
of information in PeeringDB:

1. Country
2. Public peering exchange points
3. Private peering facilities

DFOH looks at public peering information 
and identifies when two ASes are unlikely to peer

26



DFOH compares the peering information 
of the neighbors of the hypothetical victim and attacker

1 2

3 4

65

New AS link is fake

7

AS-IX Cabase
Country:

IXPs:
Facilities:

Country:
IXPs:
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Reason #1: 
Protect against 
adversarial inputs

Reason #2: 
Mitigate missing 
peering information



7

2 3

1 6 0.1 .. 0.56 .. 4.3 .. 6

0.3 .. 0.89 .. 6.1 .. 0

7.3 .. 1.21 .. 0.3 .. 8

Feature vectors

Feature categories:

Topological
Peeringdb
AS-path pattern

5

Finding 
New Links

Computing 
Features

Inferring 
Hijacks

DFOH’s fake AS links inference algorithm comprises three steps

1 2

3

5 6 7

4

new AS link

Hij Victim

RIS/RouteViews 
Vantage point

28



AS path hop
1 2 3 4 5 6

(origin)

stub-to-stub 
path

AS node degree

DFOH looks at the AS paths that include the new link 
and identifies suspicious sequence of ASes 
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AS path hop
1 2 3 4 5 6

(origin)

core-to-stub 
path
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DFOH looks at the AS paths that include the new link 
and identifies suspicious sequence of ASes 
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DFOH looks at the AS paths that include the new link 
and identifies suspicious sequence of ASes 

AS path hop
1 2 3 4 5 6

(origin)

stub hijacks core AS

AS node degree
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There are several link prediction frameworks 
SEAL (NIPS’18) is one example

?Link 
prediction
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There are several link prediction frameworks 
but they do not translate well for detecting fake AS links

Typical hierarchical structure 
of the AS-level topology

Few tier1 ASes

Many stub ASes
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Outline

DFOH’s main challenge

DFOH 

is to detect fake AS links 

in every attack scenario

DFOH’s inference pipeline

DFOH’s inferences are accurate

relies on domain-specifi
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We evaluate DFOH on artificially created forged-origin hijacks 
as there is no ground truth at scale

Methodology:

We take existing AS paths 
and prepend a new origin to create a new link

We take 9k cases where the new link exists (legitimate or “negative” cases) 
and 9k cases where the new link does not exist (suspicious or “positive” cases)
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We evaluate DFOH on artificially created forged-origin hijacks 
as there is no ground truth at scale

Methodology:

We take 9k cases where the new link exists (legitimate or “negative” cases) 
and 9k cases where the new link does not exist (suspicious or “positive” cases)

We take existing AS paths 
and prepend a new origin to create a new link

We focus on the True Positive Rate (TPR) 
and the False Positive Rate (FPR)
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DFOH is accurate upon every attack scenario
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DFOH is accurate upon every attack scenario
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Outline

DFOH’s main challenge

DFOH is up and running

is to detect fake AS links 

and useful for operators

in every attack scenario

DFOH’s inference pipeline

DFOH’s inferences are accurate

discriminates fake AS links from the real ones
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DFOH runs at https://dfoh.uclouvain.be

DFOH provides past and real-time 
forged-origin BGP hijacks detection
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DFOH is useful and practical for network operators

53

Useful: DFOH detects the two known forged-origin BGP hijacks 
(the klayswap and cbridge attacks)

Practical: DFOH only reports zero or one case every month for 99.8% of the ASes 
(worse case is 15 cases)



DFOH: A System to Detect Forged-Origin Hijacks 
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